
Simulink® Coder™
Getting Started Guide

R2019a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ Getting Started Guide
© COPYRIGHT 2011–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Revision History
April 2011 Online only New for Version 8.0 (Release 2011a)
September 2011 Online only Revised for Version 8.1 (Release 2011b)
March 2012 Online only Revised for Version 8.2 (Release 2012a)
September 2012 Online only Revised for Version 8.3 (Release 2012b)
March 2013 Online only Revised for Version 8.4 (Release 2013a)
September 2013 Online only Revised for Version 8.5 (Release 2013b)
March 2014 Online only Revised for Version 8.6 (Release 2014a)
October 2014 Online only Revised for Version 8.7 (Release 2014b)
March 2015 Online only Revised for Version 8.8 (Release 2015a)
September 2015 Online only Revised for Version 8.9 (Release 2015b)
October 2015 Online only Rereleased for Version 8.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 8.10 (Release 2016a)
September 2016 Online only Revised for Version 8.11 (Release 2016b)
March 2017 Online only Revised for Version 8.12 (Release 2017a)
September 2017 Online only Revised for Version 8.13 (Release 2017b)
March 2018 Online only Revised for Version 8.14 (Release 2018a)
September 2018 Online only Revised for Version 9.0 (Release 2018b)
March 2019 Online only Revised for Version 9.1 (Release 2019a)





Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. In the search bar, type the phrase "Incorrect
Code Generation" to obtain a report of known bugs that produce code that might compile
and execute, but still produce wrong answers. To save a search, click Save Search.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/




Product Overview
1

Simulink Coder Product Description . . . . . . . . . . . . . . . . . . . . . 1-2
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Code Generation Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Code Generation Workflow with Simulink Coder . . . . . . . . . . . 1-4

Validation and Verification for System Development . . . . . . . . 1-7
V-Model for System Development . . . . . . . . . . . . . . . . . . . . . . 1-7
Types of Simulation and Prototyping in the V-Model . . . . . . . . 1-9

Target Environments and Applications . . . . . . . . . . . . . . . . . . 1-11
About Target Environments . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Types of Target Environments . . . . . . . . . . . . . . . . . . . . . . . 1-11
Applications of Supported Target Environments . . . . . . . . . . 1-13

Getting Started Examples
2

Generate C Code for a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Configure Model for Code Generation . . . . . . . . . . . . . . . . . . . 2-2
Check Model Configuration for Execution Efficiency . . . . . . . . 2-4
Simulate the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Generate Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
View the Generated Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Build and Run Executable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Configure Model to Output Data to MAT-File . . . . . . . . . . . . . 2-11
Build Executable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

vii

Contents



Run Executable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
View Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15

Tune Parameters and Monitor Signals During Execution . . . 2-18
Configure Data Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Build Standalone Executable . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Run Executable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Connect Simulink to Executable . . . . . . . . . . . . . . . . . . . . . . 2-21
Tune Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23

viii Contents



Product Overview

• “Simulink Coder Product Description” on page 1-2
• “Code Generation Technology” on page 1-3
• “Code Generation Workflow with Simulink Coder” on page 1-4
• “Validation and Verification for System Development” on page 1-7
• “Target Environments and Applications” on page 1-11

1



Simulink Coder Product Description
Generate C and C++ code from Simulink and Stateflow models

Simulink Coder (formerly Real-Time Workshop®) generates and executes C and C++ code
from Simulink models, Stateflow® charts, and MATLAB® functions. The generated source
code can be used for real-time and non-real-time applications, including simulation
acceleration, rapid prototyping, and hardware-in-the-loop testing. You can tune and
monitor the generated code using Simulink or run and interact with the code outside
MATLAB and Simulink.

Key Features
• ANSI/ISO C and C++ code and executables for discrete, continuous, or hybrid

Simulink and Stateflow models
• Integer, floating-point, and fixed-point data types using row- and column-major layout
• Code generation for single-rate, multirate, and asynchronous models
• Single-task, multitask, and multicore code execution with or without an RTOS
• External mode simulation for parameter tuning and signal monitoring using XCP,

TCP/IP, and serial communication protocols
• Incremental and parallel code generation builds for large models

1 Product Overview

1-2



Code Generation Technology
MathWorks® code generation technology produces C or C++ code and executables for
algorithms. You can write algorithms programmatically with MATLAB or graphically in
the Simulink environment. You can generate code for MATLAB functions and Simulink
blocks that are useful for real-time or embedded applications. The generated source code
and executables for floating-point algorithms match the functional behavior of MATLAB
code execution and Simulink simulations to a high degree of fidelity. Using the Fixed-Point
Designer product, you can generate fixed-point code that provides a bit-wise match to
model simulation results. Such broad support and high degree of accuracy are possible
because code generation is tightly integrated with the MATLAB and Simulink execution
and simulation engines. The built-in accelerated simulation modes in Simulink use code
generation technology.

Code generation technology and related products provide tooling that you can apply to
the V-model for system development. The V-model is a representation of system
development that highlights verification and validation steps in the development process.
For more information, see “Validation and Verification for System Development” on page
1-7.

To learn model design patterns that include Simulink blocks, Stateflow charts, and
MATLAB functions, and map to commonly used C constructs, see “Modeling Patterns for
C Code” (Embedded Coder).

 Code Generation Technology

1-3

https://www.mathworks.com/products/fixed-point-designer.html
https://www.mathworks.com/products/fixed-point-designer.html


Code Generation Workflow with Simulink Coder
You can use MathWorks code generation technology to generate standalone C or C++
source code for rapid prototyping, simulation acceleration, and hardware-in-the-loop
(HIL) simulation:

• By developing Simulink models and Stateflow charts, and then generating C/C++ code
from the models and charts with the Simulink Coder product

• By integrating MATLAB code for code generation in MATLAB Function blocks in a
Simulink model, and then generating C/C++ code with the Simulink Coder product

You can generate code for most Simulink blocks and many MathWorks products on page
1-3. The following figure shows the product workflow for code generation with Simulink
Coder. Other products that support code generation, such as Stateflow software, are
available.

Other
MATLAB code

Code generation
from MATLAB

MATLAB

MATLAB Function
block

Other
Simulink blocks

Simulink

Simulink
Coder

C or C++
code

Compiler or
IDE toolchain

Executable program
(runs in target environment)

The code generation workflow is a part of the V-model on page 1-7 for system
development. The process includes code generation, code verification, and testing of the

1 Product Overview

1-4



executable program in real-time. For rapid prototyping of a real-time application, typical
tasks are:

• Configure the model for code generation in the model configuration set
• Check the model configuration for execution efficiency using the Code Generation

Advisor
• Generate and view the C code
• Create and run the executable of the generated code
• Verify the execution results
• Build the target executable
• Run the external model target program
• Connect Simulink to the external process for testing
• Use signal monitoring and parameter tuning to further test your program.

A typical workflow for applying the software to the application development process is:

 Code Generation Workflow with Simulink Coder

1-5



For more information on how to perform these tasks, see the Getting Started with
Simulink Coder tutorials:

1 “Generate C Code for a Model” on page 2-2
2 “Build and Run Executable” on page 2-11
3 “Tune Parameters and Monitor Signals During Execution” on page 2-18

1 Product Overview

1-6



Validation and Verification for System Development
An approach to validating and verifying system development is the V-model.

V-Model for System Development
The V-model is a representation of system development that highlights verification and
validation steps in the system development process. The left side of the ‘V’ identifies steps
that lead to code generation, including system specification and detailed software design.
The right side of the V focuses on the verification and validation of steps cited on the left
side, including software and system integration.

 Validation and Verification for System Development

1-7



Depending on your application and its role in the process, you might focus on one or more
of the steps called out in the V-model or repeat steps at several stages of the V-model.
Code generation technology and related products provide tooling that you can apply to
the V-model for system development. For more information about how you can apply
MathWorks code generation technology and related products to the V-model process, see
“Types of Simulation and Prototyping in the V-Model” on page 1-9.

1 Product Overview

1-8



Types of Simulation and Prototyping in the V-Model
This table compares the types of simulation and prototyping identified on the left side of
the V-model diagram.

 Simulation Rapid Simulation System
Simulation, Rapid
Prototyping

Rapid Prototyping
on Target
Hardware

Purpose Test and validate
functionality of
concept model

Refine, test, and
validate
functionality of
concept model in
nonreal time

Test new ideas and
research

Refine and calibrate
design during
development
process

Execution
hardware

Development
computer

Development
computer

Standalone
executable runs
outside of MATLAB
and Simulink
environments

PC or nontarget
hardware

Embedded
computing unit
(ECU) or near-
production
hardware

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis on
code efficiency and
I/O latency

More emphasis on
code efficiency and
I/O latency

 Validation and Verification for System Development

1-9



 Simulation Rapid Simulation System
Simulation, Rapid
Prototyping

Rapid Prototyping
on Target
Hardware

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and tune
data during
verification

Can accelerate
Simulink
simulations with
Accelerated and
Rapid Accelerated
modes

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch or
Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically
with scripts,
without rebuilding
the model

Can connect to
Simulink to monitor
signals and tune
parameters

Might require
custom real-time
simulators and
hardware

Might be done with
inexpensive off-the-
shelf PC hardware
and I/O cards

Might use existing
hardware, thus less
expensive and more
convenient

1 Product Overview

1-10



Target Environments and Applications
In this section...
“About Target Environments” on page 1-11
“Types of Target Environments” on page 1-11
“Applications of Supported Target Environments” on page 1-13

About Target Environments
In addition to generating source code, the code generator produces make or project files
to build an executable program for a specific target environment. The generated make or
project files are optional. If you prefer, you can build an executable for the generated
source files by using an existing target build environment, such as a third-party
integrated development environment (IDE). Applications of generated code range from
calling a few exported C or C++ functions on a host computer to generating a complete
executable program using a custom build process, for custom hardware, in an
environment completely separate from the host computer running MATLAB and Simulink.

The code generator provides built-in system target files that generate, build, and execute
code for specific target environments. These system target files offer varying degrees of
support for interacting with the generated code to log data, tune parameters, and
experiment with or without Simulink as the external interface to your generated code.

Types of Target Environments
Before you select a system target file, identify the target environment on which you
expect to execute your generated code. The most common target environments include
environments listed in the following table.

 Target Environments and Applications

1-11



Target
Environment

Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®a environment that uses a non-real-time operating
system, such as Microsoft® Windows® or Linux®b. Non-real-time (general
purpose) operating systems are nondeterministic. For example, those
operating systems might suspend code execution to run an operating system
service and then, after providing the service, continue code execution.
Therefore, the executable for your generated code might run faster or slower
than the sample rates that you specified in your model.

Real-time simulator A different computer than the host computer. A real-time simulator can be a
PC or UNIX environment that uses a real-time operating system (RTOS), such
as:

• Simulink Real-Time system
• A real-time Linux system
• A Versa Module Eurocard (VME) chassis with PowerPC® processors

running a commercial RTOS, such as VxWorks® from Wind River® Systems

The generated code runs in real time. The exact nature of execution varies
based on the particular behavior of the system hardware and RTOS.

Typically, a real-time simulator connects to a host computer for data logging,
interactive parameter tuning, and Monte Carlo batch execution studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and run as a
standalone computer as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital signal
processors (DSPs) to process communication signals to inexpensive 8-bit
fixed-point microcontrollers in mass production (for example, electronic parts
produced in the millions of units). Embedded microprocessors can:

• Use a full-featured RTOS
• Be driven by basic interrupts
• Use rate monotonic scheduling provided with code generation

a. UNIX is a registered trademark of The Open Group in the United States and other countries.
b. Linux is a registered trademark of Linus Torvalds.

A target environment can:

1 Product Overview

1-12

https://en.wikipedia.org/wiki/RTOS
https://www.mathworks.com/products/simulink-real-time.html
https://en.wikipedia.org/wiki/Rate-monotonic_scheduling


• Have single- or multiple-core CPUs
• Be a standalone computer or communicate as part of a computer network

In addition, you can deploy different parts of a Simulink model on different target
environments. For example, it is common to separate the component (algorithm or
controller) portion of a model from the environment (or plant). Using Simulink to model
an entire system (plant and controller) is often referred to as closed-loop simulation and
can provide many benefits, such as early verification of a component.

The following figure shows example target environments for code generated for a model.

C
o

d
e

g
e

n
e

ra
ti

o
n

Algorithm model

Host

executable

System model

Host computer(s)

Embedded

microprocessor

Real-time

simulator

Environment model
C

o
d

e
g

e
n

e
ra

ti
o

n

C
o

d
e

g
e

n
e

ra
ti

o
n

Applications of Supported Target Environments
The following table lists several ways that you can apply code generation technology in
the context of the different target environments.

Application Description
Host Computer

 Target Environments and Applications

1-13



Application Description
“Acceleration” (Simulink) You apply techniques to speed up the

execution of model simulation in the
context of the MATLAB and Simulink
environments. Accelerated simulations
are especially useful when run time is
long compared to the time associated
with compilation and checking whether
the target is up to date.

Rapid Simulation You execute code generated for a model
in non-real-time on the host computer,
but outside the context of the MATLAB
and Simulink environments.

Shared Object Libraries (Embedded Coder) You integrate components into a larger
system. You provide generated source
code and related dependencies for
building a system in another
environment or in a host-based shared
library to which other code can
dynamically link.

“Protect Models to Conceal Contents” You generate a protected model for use
by a third-party vendor in another
Simulink simulation environment.

Real-Time Simulator
Real-Time Rapid Prototyping You generate, deploy, and tune code on a

real-time simulator connected to the
system hardware (for example, physical
plant or vehicle) being controlled. This
design step is crucial for validating
whether a component can control the
physical system.

Shared Object Libraries (Embedded Coder) You integrate generated source code and
dependencies for components into a
larger system that is built in another
environment. You can use shared library
files for intellectual property protection.

1 Product Overview

1-14



Application Description
Hardware-in-the-Loop (HIL) Simulation You generate code for a detailed design

that you can run in real time on an
embedded microprocessor while tuning
parameters and monitoring real-time
data. This design step allows you to
assess, interact with, and optimize code,
using embedded compilers and
hardware.

Embedded Microprocessor
“Code Generation” (Embedded Coder) From a model, you generate code that is

optimized for speed, memory usage,
simplicity, and possibly, compliance with
industry standards and guidelines.

“Software-in-the-Loop Simulation” (Embedded Coder) You execute generated code with your
plant model within Simulink to verify
conversion of the model to code. You
might change the code to emulate target
word size behavior and verify numerical
results expected when the code runs on
an embedded microprocessor. Or, you
might use actual target word sizes and
just test production code behavior.

“Processor-in-the-Loop Simulation” (Embedded Coder) You test an object code component with
a plant or environment model in an open-
or closed-loop simulation to verify model-
to-code conversion, cross-compilation,
and software integration.

Hardware-in-the-loop (HIL) Simulation You verify an embedded system or
embedded computing unit (ECU), using
a real-time target environment.

 Target Environments and Applications

1-15





Getting Started Examples

• “Generate C Code for a Model” on page 2-2
• “Build and Run Executable” on page 2-11
• “Tune Parameters and Monitor Signals During Execution” on page 2-18

2



Generate C Code for a Model

In this section...
“Configure Model for Code Generation” on page 2-2
“Check Model Configuration for Execution Efficiency” on page 2-4
“Simulate the Model” on page 2-6
“Generate Code” on page 2-6
“View the Generated Code” on page 2-7

Simulink Coder generates standalone C/C++ code for Simulink models for deployment in
a wide variety of applications. The Getting Started with Simulink Coder includes three
tutorials. It is recommended that you complete Generate C Code for a Model first, and
then the following tutorials: “Build and Run Executable” on page 2-11 and “Tune
Parameters and Monitor Signals During Execution” on page 2-18.

This example shows how to prepare the rtwdemo_secondOrderSystem model for code
generation and generate C code for real-time simulation. The
rtwdemo_secondOrderSystem model implements a second-order physical system called
an ideal mass-spring-damper system. Components of the system equation are listed as
mass, stiffness, and damping.

Set your current MATLAB folder to a writeable folder. Then, to open the model, in the
command window, type:

rtwdemo_secondOrderSystem

Configure Model for Code Generation
To prepare the model for generating C89/C90 compliant C code, you can specify code
generation settings in the Configuration Parameters dialog box. To open the Configuration
Parameters dialog box, in the Simulink Editor, click the Model Configuration
Parameters button.

2 Getting Started Examples

2-2



Solver for Code Generation

To generate code for a model, you must configure a solver. Simulink Coder generates only
standalone code for a fixed-step solver. On the Solver pane, select a solver that meets the
performance criteria for real-time execution. For this model, observe the following
settings.

Code Generation Target

To specify a target configuration for the model, choose a system target file, a template
makefile, and a make command. You can use a ready-to-run Generic Real-Time Target
(GRT) configuration.

1 In the Configuration Parameters dialog box, select the Code Generation pane.
2 To open the System Target File Browser dialog box, click the System target file

parameter Browse button. The System Target File Browser dialog box includes a list
of available targets. This example uses the system target file grt.tlc Generic
Real-Time Target.

 Generate C Code for a Model

2-3



3 Click OK.

Code Generation Report

You can specify that the code generation process generate an HTML report that includes
the generated code and information about the model.

1 In the Configuration Parameters dialog box, select the Code Generation > Report
pane.

2 For this example, these configuration parameters are selected:

• Create code generation report
• Open report automatically

After the code generation process is complete, an HTML code generation report appears
in a separate window.

Check Model Configuration for Execution Efficiency
When generating code for real-time deployment, a common objective for the generated
code is that it executes efficiently. You can run the Code Generation Advisor on your
model for a specified objective such as Execution efficiency. The advisor provides
information on how to meet code generation objectives for your model.

1 In the Configuration Parameters dialog box, select the Code Generation pane.

2 Getting Started Examples

2-4



2 Under Code generation objectives, select the following, and then click Apply:

• Select objective—From the drop-down list, select Execution efficiency.
• Check model before generating code—From the drop-down list, select On

(proceed with warnings).
3 Click Check Model.
4 In the System Selector dialog box, click OK to run checks on the model.

After the advisor runs, there are two warnings indicated by a yellow triangle.
5 On the left pane, click Check model configuration settings against code

generation objectives.
6 On the right pane, click Modify Parameters. The configuration parameters that

caused the warning are changed to the recommended setting.
7 On the right pane, click Run This Check. The check now passes. The Code

Generation Advisor lists the parameters and their recommended settings for
Execution efficiency. Close the Code Generation Advisor.

Ignore the warning for the Identify questionable blocks within the specified system.
This warning is for production code generation, which is not the goal for this example.

 Generate C Code for a Model

2-5



Simulate the Model
In the Simulink Editor, simulate the model to verify that the output is as you expect for
the specified solver settings.

1 Simulate the model.
2 When the simulation is done, in the Simulink Editor, click the Simulation Data

Inspector button to open the Simulation Data Inspector.
3 Expand the run, and then select the Outport block data check boxes to plot the data.

Leave these results in the Simulation Data Inspector. Later, you can compare the
simulation data to the output data generated from the executable shown in “Build and
Run Executable” on page 2-11.

Generate Code
1 In the Configuration Parameters dialog box, on the Code Generation pane, select

the Generate code only check box.

2 Getting Started Examples

2-6



2 Click Apply.
3 In the Simulink Editor, press Ctrl+B.

After code generation, the HTML code generation report opens.

View the Generated Code
The code generation process places the source code files in the
rtwdemo_secondOrderSystem_grt_rtw folder. The HTML code generation report is in
thertwdemo_secondOrderSystem_grt_rtw/html/
rtwdemo_secondOrderSystem_codegen_rpt.html folder.

Open the HTML code generation report,
rtwdemo_secondOrderSystem_codegen_rpt.html. The code generation report
includes:

 Generate C Code for a Model

2-7



• Summary
• Subsystem Report
• Code Interface Report
• Generated Code

Code Interface Report

In the left navigation pane, click Code Interface Report to open the report. The code
interface report provides information on how an external main program can interface
with the generated code. There are three entry-point functions to initialize, step, and
terminate the real-time capable code.

2 Getting Started Examples

2-8



For rtwdemo_secondOrderSystem, the Outports section includes a single output
variable representing the Outport block of the model.

 Generate C Code for a Model

2-9



Generated Code

The generated model.c file rtwdemo_secondOrderSystem.c contains the algorithm
code, including the ODE solver code. The model data and entry-point functions are
accessible to a caller by including rtwdemo_secondOrderSystem.h.

On the left navigation pane, click rtwdemo_secondOrderSystem.h to view the extern
declarations for block outputs, continuous states, model output, entry points, and timing
data:

The next example shows how to build an executable. See “Build and Run Executable” on
page 2-11.

2 Getting Started Examples

2-10



Build and Run Executable
In this section...
“Configure Model to Output Data to MAT-File” on page 2-11
“Build Executable” on page 2-13
“Run Executable” on page 2-14
“View Results” on page 2-15

For building an executable, Simulink Coder supports these techniques:

• Using toolchain-based controls.
• Using template makefile-based controls.
• Interfacing with an IDE.

The code generation target that you select for your model determines the build process
controls that are presented to you. The example model uses the GRT code generation
target, which enables the toolchain-based controls. This example shows how to build an
executable by using the toolchain controls, and then test the executable results.

Before following this example, simulate the example model,
rtwdemo_secondOrderSystem, as described in “Generate C Code for a Model” on page
2-2. Later on, the simulation results are compared to the results from running the
executable.

Configure Model to Output Data to MAT-File
Before building the executable, enable the model to log output to a MAT-file instead of the
base workspace. You can then view the output data by importing the MAT-file into the
Simulation Data Inspector.

1 In the Configuration Parameters dialog box, use the search bar to find MAT-file
logging.

 Build and Run Executable

2-11



2 Click the MAT-file logging search result.

The Code Generation > Interfacepane opens.
3 Select MAT-file logging and set MAT-file variable name modifier to rt_. Click

Apply.
4 In the Configuration Parameters > Data Import/Export pane, under Save to

workspace or file, specify the parameters, as shown here.

2 Getting Started Examples

2-12



5 If necessary, click Apply.

Build Executable
The internal MATLAB function make_rtw executes the code generation process for a
model. make_rtw performs an update diagram on the model, generates code, and builds
an executable.

To build an executable in the working MATLAB folder:

1 On the Configuration Parameters > Code Generation pane, under Toolchain
settings, set Toolchain to Automatically locate an installed toolchain.

 Build and Run Executable

2-13



2 In the Configuration Parameters dialog box, use the search bar to find the
ValidateToolchain button. Click the button to verify your toolchain.

The Validation Report indicates if the checks passed.
3 In the Configuration Parameters > Code Generation > Interface pane, select

Software environment > Support non-finite numbers.
4 In the Configuration Parameters > Code Generation pane, under Build process,

clear the Generate code only check box.
5 Click Apply.
6 To build the executable, press Ctrl+B in the Simulink Editor.

As the code generator builds the executable, Building appears on the bottom left of
the Simulink Editor window. When the text reads Ready and the Code Generation
Report appears, the process is complete.

The code generator places the executable in the working folder. On Windows the
executable is rtwdemo_secondOrderSystem.exe. On Linux the executable is
rtwdemo_secondOrderSystem.

Run Executable
In the MATLAB Command Window, run the executable by using one of these commands:

• For Windows, type:

!rtwdemo_secondOrderSystem

• For Linux, type:

!./rtwdemo_secondOrderSystem

The MATLAB Command Window displays this output:
** starting the model **
** created rtwdemo_secondOrderSystem.mat **

2 Getting Started Examples

2-14



The code generator outputs a MAT-file, rtwdemo_secondOrderSystem.mat. It saves the
file to the working folder.

View Results
This example shows how to import data into the Simulation Data Inspector, and then
compare the executable results to the simulation results. If you have not already sent
logged data from the workspace to the Simulation Data Inspector, follow the instructions
in “Simulate the Model” on page 2-6.

1 If the Simulation Data Inspector is not already open, in the Simulink Editor, click the

Simulation Data Inspector button .
2 To open the Import dialog box, on the left side of the Simulation Data Inspector, click

Import.

3 For Import from, select the File option button.

Enter the rtwdemo_secondOrderSystem.mat file. The data populates the table.

 Build and Run Executable

2-15



Click Import.
4 In the Simulation Data Inspector, click Compare.
5 Select Run 1: rtwdemo_secondOrderSystem from the Baseline list and Run 2:

Imported_Data from the Compare To list.
6 Click the Compare button. The Simulation Data Inspector indicates that the output

from the executed code is within a reasonable tolerance of the simulation data output
previously collected in “Generate C Code for a Model” on page 2-2.

2 Getting Started Examples

2-16



The next example shows how to run the executable on your machine by using Simulink as
an interface for testing. See “Tune Parameters and Monitor Signals During Execution” on
page 2-18.

 Build and Run Executable

2-17



Tune Parameters and Monitor Signals During Execution
In this section...
“Configure Data Accessibility” on page 2-18
“Build Standalone Executable” on page 2-20
“Run Executable” on page 2-21
“Connect Simulink to Executable” on page 2-21
“Tune Parameter” on page 2-22
“More Information” on page 2-23

This example shows how to access parameter and signal data while a generated
executable runs. Use this approach to experiment with parameters and signal inputs
during rapid prototyping.

To interact with a generated program by using Simulink, simulate a model in external
mode. In this example, the program runs as a standalone executable in nonreal time on
your host computer. Simulink communicates with the executable by using a TCP/IP link.

To learn about the example model and how to generate code, see the tutorials “Generate
C Code for a Model” on page 2-2 and “Build and Run Executable” on page 2-11.

Configure Data Accessibility
To efficiently implement a model in C code, you typically do not allocate storage in
memory for every parameter, signal, and state in the model. If the model algorithm does
not require these data items to calculate outputs, code generation optimizations can
eliminate storage for the data. To instead allocate storage for the data so that you can
access it during prototyping, disable the optimizations.

1 Open the example model.

rtwdemo_secondOrderSystem

2 Getting Started Examples

2-18



2 Set Configuration Parameters > Code Generation > Optimization > Default
parameter behavior to Tunable.

 Tune Parameters and Monitor Signals During Execution

2-19



With this setting, by default, block parameters (such as the Gain parameter of a Gain
block) are tunable in the generated code.

3 Search for and clear the configuration parameter Signal storage reuse.

With this setting, by default, the generated code allocates storage for signal lines.
The external mode simulation can access the values of these signals so that you can
monitor the signals, for example, by using a Scope block in the model.

4 Click Apply.

Build Standalone Executable
Generate code and create an executable from the model.

1 Select the Configuration Parameters > Code Generation > Interface > External
mode check box.

This option enables the generated executable to later communicate with Simulink.
2 Generate code from the model. For example, in the model, press Ctrl+B.

2 Getting Started Examples

2-20



The generated executable, rtwdemo_secondOrderSystem, appears in your current
folder. A code generation report opens.

Run Executable
At the command prompt, run the generated executable. Use the option -tf to override
the stop time so that the executable runs indefinitely.

system('rtwdemo_secondOrderSystem -tf inf &')

Connect Simulink to Executable
To interact with the running process, use external mode simulation in Simulink.

1 On the Simulink Editor toolbar, set the Simulation mode drop-down list to
External.

2
Click the Connect to Target button .

3 In the model, double-click the Scope block. The scope displays the values of the
system output signals.

 Tune Parameters and Monitor Signals During Execution

2-21



Tune Parameter
Experiment with the value of a block parameter during execution. Observe the impact of
the change.

1 In the model, select View > Model Data Editor.
2 In the Model Data Editor, inspect the Parameters tab.
3 In the model, click the Gain block named Damping: c/m.
4 In the Model Data Editor, change the value of Gain from 400 to 800.

The Scope block shows the effect of the change on the signal values.

2 Getting Started Examples

2-22



More Information
For more information, this table includes common capabilities and resources for
generating and executing C and C++ code for your model.

Goal More Information
Configure data accessibility for rapid
prototyping

“Access Signal, State, and Parameter Data
During Execution”

Model multirate systems “Scheduling”
Create multiple model configuration sets
and share configuration parameter settings
across models

“Configuration Reuse” (Simulink)

Control how signals are stored and
represented in the generated code

“How Generated Code Stores Internal
Signal, State, and Parameter Data”

 Tune Parameters and Monitor Signals During Execution

2-23



Goal More Information
Generate block parameter storage
declarations and interface block
parameters to your code

“Create Tunable Calibration Parameter in
the Generated Code”

Store data separate from the model “Data Objects” (Simulink)
Interface with legacy code for simulation
and code generation

“External Code Integration”

Generate separate files for subsystems and
model

“File Packaging”

Configure code comments and reserve
keywords

“Code Appearance”

Generate code compatible with C++ “Programming Language”
Export an ASAP2 file containing
information about your model during the
code generation process

“Export ASAP2 File for Data Measurement
and Calibration”

Write host-based or target-based code that
interacts with signals, states, root-level
inputs/outputs, and parameters in your
target-based application code

“Exchange Data Between Generated and
External Code Using C API”

Create a protected model that hides all
block and line information for sharing with
a third party

“Model Protection”

Customize the build process “Build Process Customization”
Create a custom block “Block Authoring and Customization”
Create your own target “Target Development”

2 Getting Started Examples

2-24


